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Abstract — In order to estimate path loss in variows infrastructure
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types: tunnels, water distribution networks and bridges, we have

chosen the well known Finite-Difference Time-DomaifFDTD) technique [1] due to its accuracy, flexibity and potential for visualizing
the simulation results. However, problems occur owig to the high memory requirement and heavy computinal burden when dealing

with these large-scale systems using this techniqueollowing our pr

evious work on the unique correcion factor, which enables us to

transform a simply structured 3D FDTD problem into a 2D simulation using the Modified 2D FDTD method 2], in this paper, we

propose the Segmented FDTD (SFDTD), which dividesé& proble

m space into segments so that the computatal redundancy is

reduced. This technique also facilitates data reusbat eases the inconvenience imposed by configui@t changes at a later date.

Index Terms— FDTD methods, Large-scale computing.

The finite-difference time-domain (FDTD) technigiseone of
the key simulation tools in the study of Electromeiic
propagation. When one twentieth of the signal wevgth is
used as the basic element dimension i.e., unitsisedl, good
accuracy can be achieved in a FDTD simulation Y8hen
conventional FDTD is applied to model large-scalebfems
with high signal frequencies e.g., 2.40GHz, it bmes
extremely computationally demanding in terms of ragmand
CPU execution time. Some of the typical simulagwablems
of interest to us include the water distributioriwark which
requires that wireless sensors be located in fiydrants
having an average spacing of 105m [4] or in tunméth a
typical diameter of 4~5m and lengths of 100~1000msolve
the large-scale problem in the conventional FDTDihod,
non-uniform FDTD technique has been proposed, where
uniform cells are used to form the problem spacedse the
computational burden [5]. Most commercially avaiéabDTD
software also provides geometric theory of diffiact(GTD)
and Ray Tracing techniques to get around the dalensi the
conventional FDTD [6]. In [7], a modified versiori the 3D
FDTD method has led to a more memory-efficien
formulation, where only four field components atersd in
the whole domain, with a direct memory reductior3896 in
the storage of the 3D electromagnetic fields. Mestently,
considerable research has been conducted concdranadjel
Computing using the Message Passing Interface (N#I)
However massively increasing computational hardwaegy
not always be cost effective. In [2], we have desti@ted that
by reducing 3D problems to 2D, large-scale problears be
addressed using regular personal computers (P@sjhi$
paper we present the SFDTD method, which furthduces
the computational requirements and enhances tiséiiés of
running these simulations on a PC. For reason roplgiity,
our discussion is focused in a 2D domain thougtoiild be
extended to address a full 3D situation. We wiljibewith a
description of the existing problem, and then discbiow the
proposed SFDTD method may be applied to a convegitio
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FDTD problem. We then undertake the performance
validations of the SFDTD method using the PlandtEkiodel
as an example. Finally we present the conclusions.

Our simulation is benchmarked using a 3.46GHz, 8GB
RAM Dell Precision PWS 380 computer. We assume weat
are dealing with a 2D FDTD simulation and the peoblspace
is of the dimension I& JE, where JE is fixed to be 1000 unit
cells. According to the Courant Condition [9], wimigoverns
the essential stability of the FDTD method, we assthat the
signal takes two time steps to travel through omié eell in a
2D simulation, i.e.

PrROBLEM DESCRIPTIONS

AXx
1 (1)

where At , Ax andCy are the duration of each time step, the
dimension of each unit cell and the speed of lighd vacuum
respectively. Fig.1 illustrates the exponentiallycreasing
relationship between the size of a problem spaat tae
computational execution time using the conventidr@ITD
method. The memory usage in Fig. 2 is seen to asere
Fnearly with the length (IE) of the problem spadéote the
electromagnetic field evolves with time, conseglyem a
large-scale FDTD simulation, a large amount of cotafional
power is wasted updating and calculating zero whefore
the signal reaches the distant unit cells whileaddition, a
huge amount of memory is required to hold all thesms. In
order to introduce the SFDTD method, consider alero
space (IBx JE) of dimension 0£.4x1¢ by 16°. This space
can be divided into 24 individual FDTD simulatiorer
‘segments’) each of sizeox1¢ by 10*. We will show that
this results in a large reduction in computatiometi and
memory usage. The detailed description of the SFDTD
implementation will be presented in the next sectio
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Il. SFDTD METHOD

For now let us ignore the overheads due to theestaen
up by other factors, e.g., the absorbing boundaridse
following procedures are applied to realise the ¥BD
concept that is also illustrated in Fig. 3:

1. Start the conventional FDTD iteration in SegmenteOn

with the signal sourceoS
2. When Segment One reaches its steady state, i.eheal
multipath signals have arrived at each individwal, ¢chen
record 200 samples: (i) At each unit cell on Irdeef One.
(ii) At the points of interest for the path loss@stigation.
3. Save signals of length one-wavelength (i.e., ongdecin

interface then form the interface array sourceNdte that
the extraction of the array source must take phktcthe
same sampling point in time; otherwise phase in&tion
will be lost. The reason for saving one complete
wavelength of samples is to maintain the signal elsav
continuity.
4. Synchronously propagate the extracted interfacayarr
source at each corresponding unit cell in Segmeiat. T
5. Follow the same steps to complete the simulations i
Segments 2, 3, 4 and up to 24 for this example.
Fig. 4.a shows the recorded samples at one uritocebn
interface. The unit cell size in our case is onerntieth of the
wavelength and each unit cell requires two timester the
signal to cross (defined by the Courant Conditittence each
wavelength needs 40 time steps (samples) in orolebet
completely reconstructed and ready to be propagatetie
next segment. We are also able to tell if a segmastreached
its steady state by observing these samples. Fonge, Fig.
4.b shows the recorded samples before steadysmasched
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Fig. 4. Recorded samples of an interface cell

The computational time for the example using a eotional
FDTD method @.4x 1C cells x 1 segment) would take around
95 days and use over 7.16GB memory to store tree détile

the SFDTD method 1(0x 10 cellsx 24 segments) only takes
about 3.9 days with a memory usage of 307MB.

IV. PLANE EARTH PATH LOSSMODEL

Now we are going to validate our SFDTD method by
investigating the signal path loss for horizontgtiglarized
antennas in a plane earth environment at a frequefic
868MHz for a maximum antenna separation of 200mlewhi
both transmitter and receiver antennas are at ghthef 2m.
The ground is assumed to be perfectly conductieg (netal).

time domain) from each unit cell recorded at th® 2( The well-established analytical formulation for tph&ane
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2 3. Segmented Problem Space in SFDTD Simulation
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earth path loss model in decibels [10] can be esqae as:

Air

Ground

R

Fig. 5. Plane Earth Model
2 2
PL.. =10log, k[ ] ¥p ex;E jkzrg}J

where p is the reflection coefficient for the reflected ray

A

am ()

h and h are the heights of the transmitter and receive
antennas respectivelk is the free space wave-number
277//1 whereA is the wavelength of the transmitted signal; Fo
polarization can be

our example, o in the horizontal

expressed as:

Pup = (sine—wl(ar—jx)—coge)/( sig+(& - jx)- co%0) ,(3)

where x =18103/f ; & is relative permittivity of the

ground; o is conductivity of the groundg is the angle
between the incident wave and the ground surfadd ais the

transmit frequency.

V. PERFORMANCEV ALIDATIONS

Before we actually perform any simulations in tixaraple
plane earth environment, we need to firstly deteerhe total
number of time steps that are required to achieeady state.
Obviously the more time steps that we iterate, there
probable it is that the problem space is goingetach steady
state. The precise exactly number of total timgsstequired
differs from environment to environment not onlyiogvto the
different distances of interest, but also the d#fé multipath
effects in particular environments. Bearing thisnind, we
defined the time steps for each individual segmanthis
model as: 8 times the ratio between the distandetefest and
the cell dimensiodx (for short, we call it the 8*ratio time
scheme). Secondly, the distance to the absorbingdzwies
needs to be minimised. Intuitively, we want to emsthat the
points of interest are as far as possible from ahsorbing
boundaries so that the effects of reflections camimimised.
Our investigations have concluded that it is thediBension
(vertical direction in Fig. 5) that has the mogingiicant effect
on the simulation results while the IE dimensioforig the
distance of interest, i.e., the horizontal direttio Fig. 5) has
little effect in this scenario. Following our irati simulations
regarding this issue, we set JE to 4000 unit celid set the
dimension of IE to be just sufficient to hold thbsarbing
boundaries and a distance of 200m unit cells etpnva

Therefore the corresponding 2D FDTD problem spacet
with JE equal to 4000 unit cells and segment length5m,

shown in Fig. 6, where the inset panel gives aarged view
of the distortions owing to the different choicelssegment
size.
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Fig. 6. Preliminary SFDTD Simulation Results
It can be seen that, in general, the SFDTD methmodyzes
high accuracy results at close ranges regardledeafegment
size chosen, but shows more variability at longanges,
particularly for smaller segment sizes. Even scait be seen
that the SFDTD simulation results fluctuate closabout the
analytical solution. To tackle this problem we gpalmoving
average based filtering technique. This can be seeaduce
the amplitude of the ripples and a very good fittfee various
segment sizes is achieved as shown in Fig. 7.
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Fig. 7. Moving Averaged Segmented FDTD Simulatesults

Table 1 summarises the performance of the SFDTD

method in term of computational time and memorygasa
Even so, it turns out that we cannot infinitely ese the
segment size for better computational performan€er
example, in Fig. 8, we observe that the use of 2gments
gives rise to huge instability. This is becausetttal number
of time steps (8*ratio time scheme) that we iteretecach
segment is not sufficient for the segment to reigststeady

10m, 25m, 50m, 100m or 200m unit cells equivalerttate. To fix the problem and so achieve stabilitythe

respectively. The simulation results plotted orog $cale are

SFDTD simulation for the 2m segment size, our tsnbeme



PC:11

is altered by increasing the total nhumber of tineps from an
8*ratio time scheme to 20*ratio time scheme as seéfig. 8.

TABLE 1. SEGMENTED PLANE EARTH MODEL PERFORMANCECOMPARISONS

0HA A P

+  PE Analytical Model

CPU Time (hrs) Memory Usage (MB)
200mX 1 segment 55.170 1,474
100mX 2 segment 28.646 757
50m X 4 segments 22.590 399 =
25m X 8 segments 8.745 214 “uET
10m X 20 segments 4.877 115 =
5m X 40 segments 3.660 77 =
2m X 100 segments 3.350 (unstablg) 60 %
8.375 (stable) =
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Fig. 8. 2m Segment stability vs. instability wittiferent time schemes

Obviously, for a certain time scheme, an optimaltérms
of computational performance) segment size exiSise
relationship between the total CPU execution time ¢he
segment size can be calculated as:

Total _CPU _Time=nldlt [N, 4)
wheren is the number of time steps (iterations) for eack!
segment to reach its steady stateis the CPU time required
for each single time step (iteration) in the segnam N is
the number of segments divided from a problem. Eintain
the stability of the SFDTD in the plane earth exbnwe have
discussed, Fig. 9 shows the total CPU time requérem

(1]

(3]
(4]

5
VI. )

In conclusion, by reducing the segment size anthgathe
stability issue into consideration, the proposedDEB
technique for implementing FDTD modeling allows BGPU
execution time to increase only linearly with thember of
segments instead of exponentially increasing as s$eea
conventional FDTD.

The SFDTD method also enhances reusability of the
simulation data. For example, we can use the satedace

CONCLUSION

(6]

(7]

array sources to further extend the simulation émrms of el

problem dimensions and changes to the simulated

environment. However, note that the SFDTD methasb al (9]

requires that:

aThe PMLs are reasonably efficient as absorbing dann
conditions in order to reduce the overhead owingach [10]

segment.
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Fig. 9. Total computational time for the SFDTDksligy in the plane earth

model described in Section IV.

b. The size of the segments needs to be carefullyechasad
should include features that have the potentidhtaduce
significant effects on the equivalent source ariay, signal
reflections from the next segment must be insigaift
compared with the signal level in the current segme
otherwise, the equivalent array source loses ésigion.

The 2D SFDTD technique will be applied to tunneisd &
below to above ground situations (i.e., Fire Hytspain our
future work.
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